

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 1 of 5

 #7 IN A SERIES

VSAM is an acronym that stands for “Virtual Storage
Access Method”. Knowing that, unfortunately,

doesn’t help you understand what
VSAM is; by itself, the acronym is not
very descriptive. In fact, the acronym

“VSAM” by itself is used to refer to: VSAM catalog
management, the VSAM access method, and VSAM
record management. So, you have to understand the
context of the acronym usage to know which of the
three are being referenced. Technically, the VSAM
catalog is no longer supported and its replacement is
known as the Integrated Catalog Facility (or the “ICF
catalog”). “Under the covers” the ICF catalog uses
VSAM data sets to store catalog information. The
VSAM access method is the intermediary between
an application program and the VSAM data sets. It
provides an application programming interface that
makes it relatively easy for an application
programmer to read and write a VSAM data set
without having to understand the intricacies of its
data set structure. In this article, we will focus on
VSAM record management.

Data Stored on Disk
Before we get into the details of record
management for VSAM data sets, let’s understand
why having a record structure for data sets stored on
disk is important. In general, the data sets
businesses use to manage their clients, inventory,
accounts, etc. contain thousands and possibly
millions of records. To facilitate direct or random
access processing, each record usually contains a
unique identifier called a key. The key can be an
account number, a part number, a customer
number, etc. but it must uniquely identify a record.
Businesses want to be able to process disk data
randomly some of the time (i.e. by going directly to a
specific record without having to process or look at
all the records that precede it in the data set) and
sequentially (i.e. in key order) at other times. And, a
business wants the applications that process the
data to have excellent performance, no matter how
the data set is processed. “Excellent performance”

implies that there should be a minimal number of
read or write operations used to access disk data,
and movement of the read / write heads on the disk
should be avoided. Disk head movement involves
mechanical motion which is very slow compared to
electronic operations that can be performed by the
CPU for example. Businesses also want to be able to
modify a disk data set once created. So, they want to
be able to insert new records in an existing key
ordered data set and maintain the data set’s order.
While this sounds simple, it is actually quite
challenging.

Besides random and sequential access with good
performance, there are a number of other
requirements for the storage and access of disk data.
These include the ability to:

• Substantially increase the overall size of the
initial data set without affecting access
performance

• Provide disk device independence to allow
movement of data sets and introduction of
new disk technologies without having to re-
write programs or re-structure stored data.

• Delete records and reuse the space they
occupied

• Change the length of a variable length
record when updating the record

All of these requirements for disk data storage and
access argue for a data set structure that avoids a
“brute force” approach that would simply re-write
the entire data set whenever a change is made.
VSAM data sets have an internal structure that does
all of this and more. (Note: disk files on personal
computers do not have the same requirements; they
are usually not as large and do not have a need for
frequent random access from an application
program.)

Early Disk Data Storage
Prior to the introduction of VSAM record
management in 1973, software developers had

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 2 of 5

limited help in creating and managing direct access
disk data sets. A software developer could choose
from a variety of data formats and organizations that
were supported, but not all of which were optimized
for disk data set usage. The indexed sequential
access method (ISAM) and organization was best
suited to disk data, but it had shortcomings including
not being able to effectively handle insertion of
many records with closely related keys and not being
able to reuse deleted record space. VSAM overcame
these obstacles and in addition, provided a robust
set of extended capabilities to effectively access disk
data (e.g. random access by relative record number
or relative byte address, alternate indices, generic
key access, approximate key access, etc.). There are
more modern implementations of ISAM on several
operating systems, but VSAM remains the “gold
standard” to which other disk data access
implementations are compared. As we will see,
VSAM has continued to evolve and enhance its
functionality.

VSAM Data Set Overview
VSAM provides four data set types or organizations:

1. key sequenced data set (KSDS)
2. entry sequenced data set (ESDS)
3. relative record data set (RRDS)
4. linear data set (LDS)

All four data set types share some characteristics:

• VSAM data sets are always stored on disk
• VSAM data sets are always cataloged
• VSAM data sets are always read by an

application using a GET or READ request and
written using a PUT or WRITE request.

• VSAM data sets can use either fixed or
variable length logical records (except for
LDS)

• I/O performed by VSAM on behalf of the
application always uses a fixed size record
called a VSAM control interval (CI). (Note:
this does not mean that the application
logical records also must also be fixed length
– see above). The size of the CI can be
chosen when the data set is created.

• VSAM data sets always use record
orientation for I/O, just like traditional
sequential and partitioned data sets1.
However, internally, VSAM treats all data as
a byte stream using the offset from the
beginning of the data set (called the relative
byte address or RBA). Doing so makes the
address of a record device independent and
provides the ability to easily move VSAM
data sets from one disk device to another.

• VSAM data sets all have a cluster name. The
cluster name provides for “grouping” of
components of a VSAM data set so that all
components can be referred to using one
name in the catalog. This grouping concept
applies to a KSDS or ESDS that can have both
a data component and an index component.
The cluster name when used with the other
VSAM record types simply refers to the data
component.

• IDCAMS is the utility used to manage (i.e.
define, delete, load, copy, print, etc.) VSAM
data sets.

There are three ways to access VSAM data sets (but
not all four types of VSAM data sets can be accessed
using all three techniques):

• Random (or direct) access.
• Sequential access
• Skip sequential access, a combination of

random and sequential access

Let’s look at each VSAM data set organization in
more detail. The primary difference between the
four VSAM data set types is the way data is stored
and accessed. As we will see, the way an application
needs to process data stored in a VSAM data set will
determine the type of VSAM organization chosen.

VSAM ESDS
The VSAM ESDS is very similar to a traditional
sequential data set so it is a good choice when only
sequential access to data will be needed; records are

1 See ECI No. 6

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 3 of 5

entered and retrieved in the ESDS in the order
written. A good use of an ESDS is to collect data that
will never change. For example, a historical log of
activity where a new record is entered in the ESDS
each time an event occurs. Another example might
be the collection of transactions in an ESDS as they
occur and the later use of that transaction data set
to update a master data set.

ESDS records can be either fixed or variable length.
New records are always added at the end of the data
set. Records cannot be physically deleted, nor space
for a deleted record reused. If a record is no longer
needed, it must be logically deleted. This is usually
done by marking a field in the record reserved for
this purpose. Although an ESDS can be accessed
randomly using an RBA, this capability is rarely used.

VSAM RRDS
A VSAM RRDS organization is a good choice when
only random processing will be needed to access the
data. Data can be randomly accessed using the
Relative Record Number (RRN) of the record in the
data set. Think of an RRDS as a one dimensional
array consisting of slots where records can be
stored. Each slot has a number beginning at one for
the first slot in the RRDS. This is the RRN for the
record. New records can be (randomly) added to an
RRDS using the RRN to insert them into an existing
slot. Records can be deleted and the space reused.
Record length cannot change when a record is
updated. RRDS supports both fixed and variable
length records, with random access to fixed length
records being somewhat faster than random access
to variable length records. Sequential access is
permitted, with records being returned in RRN
order.

VSAM KSDS
A VSAM KSDS is a good choice for an application that
needs to randomly access data some of the time,
and sequentially access the data at other times. A
bank for example, needs to access account records
randomly for ATM withdrawals, but will likely want
to access accounts sequentially (perhaps by zip code)

when printing monthly statements. The z/OS catalog
uses a VSAM KSDS to randomly and quickly locate
data sets. The VSAM KSDS is the most widely used of
the four VSAM data set organizations.

A VSAM KSDS consists of two disk areas: an index
area in addition to the data area for the data set
itself. A VSAM cluster name refers to both of these
areas (whereas with an RRDS and LDS, the cluster
name simply refers to the data set itself since they
have no index). The KSDS index includes an entry for
each CI in the KSDS. Each entry consists of the disk
address of the CI and the highest key value found in
the CI. While the index is permanently stored on
disk, it is usually small enough (even for a very large
KSDS) to be brought entirely into virtual storage
when a KSDS is being processed. This, and the fact
that it is a multi-level index, significantly speeds up
searches when doing random processing. Only a
portion of the KSDS index needs to be in virtual
storage when processing a KSDS sequentially. When
a KSDS is processed sequentially, records are
returned in key sequence.

Records in a KSDS can be fixed or variable length and
are maintained in key order. Records can be
updated, but the key field of a record cannot be
changed using an update. An update can change the
length of a variable length record. Records can be
physically deleted and the space made available for
reuse. Records must have a unique primary key, but
they may also have secondary keys so that records
can be processed based on key fields other than the
primary key. KSDS records can be processed using a
key or by using an RBA. While RBA is more efficient,
it puts more of a burden on the application program
to keep track of changing RBAs and not all
programming languages support access using an
RBA. Consequently, record processing using keys is
much more common for a KSDS.

The management of free space and the way records
are inserted into a KSDS is the one thing that clearly
distinguishes a KSDS data set from the other VSAM
data sets. When a KSDS is created, it is usually
created with free space distributed throughout the

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 4 of 5

CIs of the KSDS. Each CI contains: data records
followed by free space (as specified by the user that
creates the KSDS) followed by VSAM control
information. When a new record is to be added to
the KSDS, it is inserted in key order. To do so, VSAM
consults the KSDS index to find out which CI should
hold the new record and the record is added in key
order (using the free space in the CI) to the other
records already in the CI. This may require that some
of the existing records be moved to make room in
the sequence for the new record as records are
always kept in key order sequence in a CI.
Occasionally, a CI does not have free space available
to contain a new record. In that case, VSAM
performs a “CI split”. That is, it looks for an “empty”
CI within the control area (CA) of the CI that is full,
and moves half of the records from the full CI to an
“empty” CI to make room for the new record. This of
course results in updates to the index and changes
the RBA for some records. The CA referred to earlier
is simply a collection of contiguous CIs (for example,
all the CIs that will fit in a cylinder on disk). The CA is
at least a track and at most a cylinder of disk space.
The CA is defined by VSAM when the KSDS is
created, not by the user that creates the KSDS. If an
“empty” CI does not exist within the CA where the
record is to be added, VSAM performs a “CA split”
and moves some CI’s to a new CA to create free
space. If there are no remaining CAs in the KSDS,
VSAM dynamically acquires more disk storage to
create a new CA for the KSDS.

VSAM LDS
A VSAM LDS is a good choice when the application
that will use the data manages logical records
directly itself. That is, VSAM will treat the LDS data
as a stream of bytes and unlike the other VSAM
organizations, does not store any control
information regarding the logical records (since
VSAM does not understand what constitutes a
record for the data stored in an LDS). An LDS is
processed like an ESDS, with certain restrictions.
When an LDS CI is brought into virtual storage for an
application, it is up to the application to assign
meaning to the CI data. For example, the DB2

database manager uses VSAM LDS data sets to store
its relational data. DB2 knows what constitutes a
row, column, and table in the relational data within
a CI. The VSAM LDS organization is also of benefit
when exceptional performance is an application
requirement.

VSAM has been enhanced with new features and
functions many times over its long history. Two
significant recent enhancements are VSAM Record
Level Sharing (RLS) and Transactional VSAM (TVS).

VSAM Record Level Sharing (RLS)
VSAM RLS was introduced in the mid-1990s and is
designed to be used by Customer Information
Control System (CICS) applications accessing VSAM
data in a Parallel Sysplex. It allows VSAM data sets to
be shared (at the record level), with full update
capability and data integrity, between CICS
applications running in multiple CICS regions. VSAM
RLS was conceived to address some of the short
comings of CICS access to VSAM data using a CICS
file owing region (FOR) which, in some
circumstances, could be a performance bottleneck
and/or a single point of failure. When a batch2 job
shares a VSAM data set with a CICS on line region,
only read access from the batch job is supported.
Transaction support for VSAM RLS is a shared
responsibility with CICS providing logging and
recovery while VSAM RLS provides record level
serialization (locking) and sysplex wide data sharing
using the coupling facility (CF).

Transactional VSAM (TVS)
Transactional VSAM builds on and enhances VSAM
RLS. While VSAM RLS represents a good first step in
terms of enhancing VSAM for Parallel Sysplex data
sharing, it does not go far enough in terms of the
breadth of shared access – it only applies to CICS
applications and even then it only supports read
access when on line CICS applications share a VSAM
data set with a batch job. Further, it does not
support data sharing with non-CICS applications. To

2 See ECI No. 4

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 5 of 5

remedy these shortcomings, TVS was developed and
delivered in the mid-2000s. TVS builds on the VSAM
RLS support by using the RLS locking and data
sharing mechanisms. It adds logging using the z/OS
logger and transaction recovery by using the z/OS
Resource Recovery Services (RRS). TVS thus provides
VSAM data set sharing for applications in a Parallel
Sysplex with full read/write access and data
integrity. Unfortunately, programs run as batch jobs
require modifications to be used effectively with
TVS. Consequently, TVS is not widely used.

Summary
So there you have it – VSAM provides a variety of
organizations for disk data and the services needed
to access them which, when taken all together,
delivers industry leading capabilities for data stored
on disk.

We will explore other aspects of Enterprise
Computing in subsequent articles.

	Data Stored on Disk
	Early Disk Data Storage
	VSAM Data Set Overview
	VSAM ESDS
	VSAM RRDS
	VSAM KSDS
	VSAM LDS
	VSAM Record Level Sharing (RLS)
	Transactional VSAM (TVS)
	Summary

